Area detector scans
Absorption correction: none 15309 measured reflections 7744 independent reflections
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=27.70^{\circ}$
$h=-10 \rightarrow 9$
$k=-34 \rightarrow 35$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\max }=-0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.156$
$S=1.000$
7740 reflections
539 parameters
H atoms not refined
$\Delta \rho_{\text {max }}=0.160 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.184 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Acta Cryst. (1997). C53, 1694-1696

$\boldsymbol{\beta}$-D-3'-Deoxyadenosine (Cordycepin)

P. Karthe, ${ }^{a}$ N. Gautham, ${ }^{a}$ Anil Kumar ${ }^{b}$ and S. B. Katti ${ }^{b}$
${ }^{a}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600 025, India, and
${ }^{b}$ Division of Biopolymers, Central Drug Research Institute, Lucknow 226 00I, India. E-mail: crystal@giasmd0I.vsnl. net.in

(Received 4 November 1996; accepted 15 May 1997)

Abstract

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$, the nucleoside adopts an anti conformation with C^{\prime}-endo sugar puckering. The overall molecular conformation is similar to that of both adenosine and 2^{\prime}-deoxyadenosine.

Comment

3'-Deoxynucleosides could function as possible inhibitors of RNA synthesis and, thus, may be useful in the treatment of cancer, as well as viral and other infections (Bazin \& Chattopadhyaya, 1985; Rainny \& Santi, 1983). As part of our program to study their molecular conformations (Karthe, Gautham, Kumar \& Katti, 1997), we report here the structure of 3^{\prime}-deoxyadenosine, (I).

(I)

An ORTEP92 (Vicković, 1994) view of the molecule with the atom-numbering scheme is shown in Fig. 1. The conformation of the base with respect to the ribose moiety is anti with the glycosidic torsion angle χ_{CN}, $\mathrm{O} 4^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{N} 9-\mathrm{C} 4$, equal to -172.5 (6) ${ }^{\circ}$. In $\alpha-\mathrm{D}-2^{\prime}-$ deoxyadenosine (Watson, Sutor \& Tollin, 1965) and also in β-D-adenosine (Lai \& Marsh, 1972), the conformation is anti. The sugar pucker in the present structure is $\mathrm{C} 3^{\prime}$-endo, as observed in adenosine. The pseudorotation phase angle (P) and the maximum amplitude of puckering (τ_{M}) are 4.4 and 38.4°, respectively. In 2^{\prime}-deoxyadenosine, the sugar pucker is C^{\prime}-exo. The torsion angles $\varphi_{0 \circ}\left(\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O} 4^{\prime}\right)$ and $\varphi_{\mathrm{OC}}\left(\mathrm{O5}^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 3^{\prime}\right)$ are $57.3(8)$ and $175.5(6)^{\circ}$, respectively. The conformation about the $\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$ bond

Fig. 1. Displacement ellipsoid plot of the title molecule (50% probability ellipsoids) with the atom-numbering scheme adopted.
is thus gauche-gauche. This is the same as in 2^{\prime}-deoxyadenosine and adenosine. Indeed, the overall molecular conformation is very similar in the three compounds; only the ribose conformations are different. The absence of the $2^{\prime}-\mathrm{O}$ atom appears to be associated with the $\mathrm{C} 3^{\prime}-$ exo conformation in the structure of 2^{\prime}-deoxyadenosine.
In the crystal, each molecule is hydrogen bonded to four symmetry-related molecules. The NH_{2} group of the base forms a three-centred hydrogen bond with the $\mathrm{O5}^{\prime}$ atom of a symmetry-related molecule at $\left(x-\frac{1}{2},-y+\frac{3}{2}\right.$, $-z+2$) and the N 7 atom of a symmetry-related molecule at $\left(x-\frac{1}{2},-y+\frac{3}{2},-z+3\right)$.

Experimental

Thin plate-like crystals were grown by slow evaporation of an aqueous solution of the compound at room temperature.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$
$M_{r}=251.25$
Orthorhombic
$P 2,2$, 2
$a=10.231$ (4) \AA
$b=22.752$ (7) \AA
$c=4.817(2) \AA$
$V=1121.3(7) \AA^{3}$
$Z=4$
$D_{x}=1.488 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.495 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
1194 measured reflections
1194 independent reflections
715 reflections with $I>2 \sigma(I)$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 21 reflections
$\theta=6-12^{\circ}$
$\mu=0.114 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Thin plate
$0.30 \times 0.10 \times 0.05 \mathrm{~mm}$
Colourless

$$
\begin{aligned}
& \theta_{\max }=25^{\circ} \\
& h=0 \rightarrow 12 \\
& k=0 \rightarrow 26 \\
& l=0 \rightarrow 5 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \text { intensity decay: }<3 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.128$
$S=0.844$
1193 reflections
216 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+4.6216 P\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.006$

$$
\Delta \rho_{\max }=0.264 \mathrm{e}_{\circ}^{-3}
$$

$\Delta \rho_{\text {min }}=-0.238 \mathrm{e}^{-3}$
Extinction correction:
SHELXL93 (Sheldrick, 1993)

Extinction coefficient 0.007 (2)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{1 j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	${ }^{9}$	z	$U_{\text {eq }}$
N1	0.2843 (5)	0.8454 (3)	1.3446 (14)	0.036 (2)
C2	0.3013 (7)	0.8903 (3)	1.1721 (19)	0.039 (2)
N3	0.4007 (5)	0.9027 (2)	1.0056 (14)	0.034 (2)
C4	0.4947 (6)	0.8615 (3)	1.0294 (15)	0.027 (2)
C5	0.4920 (6)	0.8128 (3)	1.1968 (15)	0.026 (2)
C6	0.3810 (7)	0.8046 (3)	1.3612 (16)	0.028 (2)
N6	0.3633 (6)	0.7597 (2)	1.5368 (15)	0.039 (2)
N7	0.6063 (6)	0.7803 (2)	1.1629 (14)	0.035 (2)
C8	0.6726 (7)	0.8101 (3)	0.9779 (17)	0.038 (2)
N9	0.6104 (5)	0.8597 (2)	0.8861 (12)	().0273(14
Cl^{\prime}	0.6567 (6)	0.9052 (3)	0.6917 (16)	0.027 (2)
C2 ${ }^{\prime}$	0.6962 (8)	0.9607 (3)	0.8453 (17)	0.038 (2)
O2 ${ }^{\prime}$	0.6874 (5)	1.0079 (2)	0.6516 (11)	0.052 (2)
C3 ${ }^{\prime}$	0.8390 (8)	0.9478 (3)	0.9192 (17)	0.041 (2)
C4'	0.8839 (7)	0.9162 (3)	0.6570 (17)	0.032 (2)
O4'	0.7705 (4)	0.8840 (2)	$0.5603(10)$	0.0306 (12)
C5'	0.9962 (8)	0.8741 (3)	0.6954 (18)	0.044 (2)
O5'	1.0211 (5)	0.8445 (2)	0.4390 (12)	0.045 (2)

Table 2. Selected torsion angles $\left(^{\circ}\right)$

$\mathrm{O}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$-30.6(7)$	$\mathrm{C}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}-\mathrm{C}^{\prime}$	$9.6(7)$
$\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$38.3(7)$	$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O}^{\prime}-\mathrm{C}^{\prime}$	$15.7(7)$
$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O}^{\prime}$	$-33.6(7)$		

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: SDP (Frenz, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP92 (Vicković, 1994). Software used to prepare material for publication: SHELXL93.

We thank the National Diffractometer Facility at AIIMS, New Delhi, India, for data collection. PK thanks CSIR, India, for the award of Senior Research Fellowship. We thank DBT, India, for financial assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1055). Services for accessing these data are described at the back of the journal.

References

Bazin, H. \& Chattopadhyaya, J. (1985). Synthesis, pp. 1108-1111. Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius. Delft, The Netherlands.

Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft University Press.
Karthe, P., Gautham, N., Kumar, A. \& Katti, S. B. (1997). Nucleosides Nucleotides, 11, 1-10.
Lai, T. F. \& Marsh, R. E. (1972). Acta Cryst. B28, 1982-1989.
Rainny, P. \& Santi, D. V. (1983). Proc. Natl Acad. Sci. USA, 80. 288-292.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Vicković, I. (1994). J. Appl. Cryst. 27, 437.
Watson, D. G., Sutor, D. J. \& Tollin, P. (1965). Acta Cryst. 19, 111124.

Acta Cryst. (1997). C53, 1696-1698

Acetyl- Δ Phe-L-Ala- Δ Phe-d-Ala Methyl Ester

Angela Tuzi, ${ }^{a}$ Adriano Fissi ${ }^{b}$ and Osvaldo Pieroni ${ }^{b, c}$
${ }^{a}$ Dipartimento di Chimica, Universitá di Napoli 'Federico II', Via Mezzocannone 4, 80134 Napoli, Italy, ${ }^{\text {b }}$ CNR, Istituto di Biofisica, Via S. Lorenzo 26, 56100 Pisa, Italy, and ${ }^{\text {c Dipartimento di Chimica e Chimica Industriale, Via }}$ Risorgimento 35, 56100 Pisa, Italy. E-mail: tuzi@chemna. dichi.unina.it

(Received 22 November 1996; accepted 12 May 1997)

Abstract

The peptide chain of acetylphenylalanine-L-alanine-phenylalanine-D-alanine methyl ester, $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{6}$, adopts a 3_{10}-helical conformation having right-handed screw sense. The 3_{10}-helix is stabilized by intramolecular hydrogen bonds, between CO of the acetyl group and NH of $\Delta \mathrm{Phe}^{3}$, and between CO of $\Delta \mathrm{Phe}^{1}$ and NH of $\mathrm{D}-\mathrm{Ala}^{4}$. The hydrogen bonds form two consecutive tenmembered rings whose (φ, ψ) torsion angles are quite close to the standard values for type-III β-turns. In the crystal, the molecules are linked head-to-tail by intermolecular hydrogen bonds to form continuous helical columns. These are aligned along axes parallel to the c axis, with neighbouring columns running in opposite directions. There are no lateral hydrogen bonds between helical columns, but only hydrophobic interactions provided by the interdigitation of apolar side chains of the dehydro-phenylalanine residues, as well as of the C terminal methyl ester groups.

\section*{Comment}

Incorporation of α, β-unsaturated amino-acidic residues in a peptide sequence produces remarkable conforma-

tional consequences and can induce structural motifs which are not available when the same residues are saturated. Various types of helical structures have been found to occur depending on the specific sequence and positioning of dehydro residues (Rajashankar, Ramakumar, Jain \& Chauhan, 1995; Tuzi et al., 1996). 310Helices have been observed for peptides containing two alternate dehydro-phenylalanine ($\Delta \mathrm{Phe}$) residues (Ciajolo, Tuzi, Pratesi, Fissi \& Pieroni, 1991, 1992). Here we describe the crystal and molecular structure of the tetrapeptide $\mathrm{Ac}-\Delta \mathrm{Phe}^{1}-\mathrm{L}-\mathrm{Ala}^{2}-\Delta \mathrm{Phe}^{3}-\mathrm{D}-\mathrm{Ala}^{4}-\mathrm{OMe}$, (I).

(I)

In helix-forming peptides, the role of the chiral residues is known to be different depending on whether they are located at an internal position or at the C terminal position; more specifically, if they are both of the L configuration, the alanine in position 2 would favour the right-handed screw sense whereas the alanine in position 4 would prefer the opposite left-handed sense (Pieroni, Fissi, Pratesi, Temussi \& Ciardelli, 1993; Tuzi et al., 1996). The presence of an alanine residue having D configuration at the C-terminal position, therefore, may be expected to produce a more marked propensity toward formation of a right-handed helix.

Relevant bond lengths, angles and torsion angles are reported in Table 1. They are in good agreement with corresponding values usually observed in peptides, including those containing dehydro-phenylalanine residues (Singh, Narula \& Patel, 1990). The $\mathrm{C}=\mathrm{C}$ double bonds show a trans configuration of the phenyl ring with respect to the $\mathrm{C}=\mathrm{O}$ group. As already observed in analogous compounds (Ciajolo et al., 1991, 1992), the slight shortening of $\mathrm{N}-\mathrm{C}^{\alpha}$ and $\mathrm{C}^{\alpha}-\mathrm{CO}$ bonds in Δ Phe 1 and Δ Phe 3 seems to indicate partial conjugation of the styryl side chains with the peptide chain. Complete conjugation, however, is hinder \in d for steric reasons. In fact, for Phe ${ }^{1}$, the plane of the $\mathrm{C}=\mathrm{C}$ double bond (including atoms $\mathrm{C} 1 A, \mathrm{C} 1 B, \mathrm{C} 1 \mathrm{C}, \mathrm{N} 1$ and Cl^{\prime}) forms a skew angle of $132.7(2)^{\circ}$ with the plane of the preceding peptide bond (including atoms $\mathrm{N} 1, \mathrm{C} 2, \mathrm{O} 1$ and $\mathrm{Cl} A$) and an angle of $30.8(2)^{\circ}$ with the plane of the next peptide bond (involving atoms $\mathrm{N} 2, \mathrm{Cl}^{\prime}, \mathrm{Ol}^{\prime}$ and $\mathrm{C} 1 A$). For Phe^{3}, the values of the corresponding angles are $61.6(1)$ and $150.7(2)^{\circ}$. The styryl groups themselves are not planar; in $\Delta \mathrm{Phe}^{1}$, the planes of the phenyl ring and the $\mathrm{C}=\mathrm{C}$ double-bond plane form an angle of $34.4(2)^{\circ}$, while in $\Delta \mathrm{Phe}^{3}$, they deviate from planarity to a minor extent [$6.0(9)^{\circ}$].

The molecular conformation of the peptide is shown in Fig. 1. It is characterized by the presence of two intramolecular hydrogen bonds $(\mathrm{C}=\mathrm{O}$ of the acetyl

